課程描述INTRODUCTION
· 市場(chǎng)經(jīng)理· 高層管理者· 中層領(lǐng)導(dǎo)· 其他人員
日程安排SCHEDULE
課程大綱Syllabus
數(shù)據(jù)挖掘工具課程
【課程目標(biāo)】
隨著大數(shù)據(jù)分析的需求越來(lái)越旺盛,大數(shù)據(jù)分析工具也越來(lái)越琳瑯滿目,然而,絕大多數(shù)的分析工具都只具有單一用途,無(wú)法滿足企業(yè)的復(fù)雜的多樣化的全面的業(yè)務(wù)分析需求,因此分析工具的選擇成為了一個(gè)挑戰(zhàn)。
一個(gè)良好的分析工具必須滿足如下要求:
易學(xué)易用易操作。
分析效率要高。
滿足業(yè)務(wù)分析需求。
如果要說(shuō)前兩個(gè)要求,顯然類似于Excel/Power BI/Tableau等工具都是滿足要求的,但此類工具卻無(wú)法解決更復(fù)雜的業(yè)務(wù)問(wèn)題,比如影響因素分析、客戶行為預(yù)測(cè)/精準(zhǔn)營(yíng)銷、客戶群劃分、產(chǎn)品交叉銷售、產(chǎn)品銷量預(yù)測(cè)等等,這些需求用Excel/PBI等工具就難以勝任了,需要用到更高級(jí)的數(shù)據(jù)挖掘工具,比如IBM SPSS工具。IBM SPSS工具是面向非專業(yè)人士的高級(jí)的分析工具(挖掘工具),它提供大量的分析方法和分析模型,能夠解決的業(yè)務(wù)問(wèn)題更豐富,提供了更加強(qiáng)大的業(yè)務(wù)數(shù)據(jù)分析功能,并且它封裝了具體的分析算法,即使你沒(méi)有深厚的技能能力,也能夠勝任復(fù)雜的數(shù)據(jù)分析和挖掘。
本課程面向數(shù)據(jù)分析部等專門負(fù)責(zé)數(shù)據(jù)分析與挖掘的人士,專注大數(shù)據(jù)挖掘工具SPSS Statistics的培訓(xùn)。
本課程從實(shí)際的業(yè)務(wù)需求出發(fā),對(duì)數(shù)據(jù)分析及數(shù)據(jù)挖掘技術(shù)進(jìn)行了全面的介紹,將數(shù)據(jù)挖掘標(biāo)準(zhǔn)流程、分析思路、分析方法、分析模型,全部落地在SPSS工具中,通過(guò)大量的工具操作和演練,幫助學(xué)員熟練掌握SPSS工具的使用,并能夠?qū)PSS工具在實(shí)際的業(yè)務(wù)數(shù)據(jù)分析中滿地,實(shí)現(xiàn)“知行合一”。
通過(guò)本課程的學(xué)習(xí),達(dá)到如下目的:
了解大數(shù)據(jù)挖掘的標(biāo)準(zhǔn)過(guò)程和挖掘步驟。
掌握基本的統(tǒng)計(jì)分析,常用的影響因素分析。
理解數(shù)據(jù)挖掘的常見模型,原理及適用場(chǎng)景。
熟練掌握SPSS基本操作,能利用SPSS解決實(shí)際的商業(yè)問(wèn)題。
【授課對(duì)象】
市場(chǎng)部、業(yè)務(wù)支撐部、數(shù)據(jù)分析部、運(yùn)營(yíng)分析部等對(duì)業(yè)務(wù)數(shù)據(jù)分析有較高要求的相關(guān)人員。
【課程大綱】
數(shù)據(jù)挖掘標(biāo)準(zhǔn)流程
數(shù)據(jù)挖掘概述
數(shù)據(jù)挖掘的標(biāo)準(zhǔn)流程(CRISP-DM)
商業(yè)理解
數(shù)據(jù)準(zhǔn)備
數(shù)據(jù)理解
模型建立
模型評(píng)估
模型應(yīng)用
案例:客戶流失預(yù)測(cè)及客戶挽留
數(shù)據(jù)集的基本知識(shí)
存儲(chǔ)類型
統(tǒng)計(jì)類型
角度
SPSS工具簡(jiǎn)介
數(shù)據(jù)預(yù)處理過(guò)程
數(shù)據(jù)預(yù)處理的基本步驟
數(shù)據(jù)讀取、數(shù)據(jù)理解、數(shù)據(jù)處理、變量處理、探索分析
數(shù)據(jù)預(yù)處理的主要任務(wù)
數(shù)據(jù)集成:多個(gè)數(shù)據(jù)集的合并
數(shù)據(jù)清理:異常值的處理
數(shù)據(jù)處理:數(shù)據(jù)篩選、數(shù)據(jù)精簡(jiǎn)、數(shù)據(jù)平衡
變量處理:變量變換、變量派生、變量精簡(jiǎn)
數(shù)據(jù)歸約:實(shí)現(xiàn)降維,避免維災(zāi)難
數(shù)據(jù)集成
外部數(shù)據(jù)讀入:Txt/Excel/SPSS/Database
數(shù)據(jù)追加(添加數(shù)據(jù))
變量合并(添加變量)
數(shù)據(jù)理解(異常數(shù)據(jù)處理)
取值范圍限定
重復(fù)值處理
無(wú)效值/錯(cuò)誤值處理
缺失值處理
離群值/極端值處理
數(shù)據(jù)質(zhì)量評(píng)估
數(shù)據(jù)準(zhǔn)備:數(shù)據(jù)處理
數(shù)據(jù)篩選:數(shù)據(jù)抽樣/選擇(減少樣本數(shù)量)
數(shù)據(jù)精簡(jiǎn):數(shù)據(jù)分段/離散化(減少變量的取值個(gè)數(shù))
數(shù)據(jù)平衡:正反樣本比例均衡
數(shù)據(jù)準(zhǔn)備:變量處理
變量變換:原變量取值更新,比如標(biāo)準(zhǔn)化
變量派生:根據(jù)舊變量生成新的變量
變量精簡(jiǎn):降維,減少變量個(gè)數(shù)
數(shù)據(jù)降維
常用降維方法
如何確定變量個(gè)數(shù)
特征選擇:選擇重要變量,剔除不重要的變量
從變量本身考慮
從輸入變量與目標(biāo)變量的相關(guān)性考慮
對(duì)輸入變量進(jìn)行合并
因子分析(主成分分析)
因子分析的原理
因子個(gè)數(shù)如何選擇
如何解讀因子含義
案例:提取影響電信客戶流失的主成分分析
數(shù)據(jù)探索性分析
常用統(tǒng)計(jì)指標(biāo)分析
單變量:數(shù)值變量/分類變量
雙變量:交叉分析/相關(guān)性分析
多變量:特征選擇、因子分析
演練:描述性分析(頻數(shù)、描述、探索、分類匯總)
數(shù)據(jù)可視化篇
數(shù)據(jù)可視化的原則
常用可視化工具
常用可視化圖形
柱狀圖、條形圖、餅圖、折線圖、箱圖、散點(diǎn)圖等
圖形的表達(dá)及適用場(chǎng)景
演練:各種圖形繪制
影響因素分析篇
問(wèn)題:如何判斷一個(gè)因素對(duì)另一個(gè)因素有影響?比如營(yíng)銷費(fèi)用是否會(huì)影響銷售額?產(chǎn)品價(jià)格是否會(huì)影響銷量?產(chǎn)品的陳列位置是否會(huì)影響銷量?
風(fēng)險(xiǎn)控制的關(guān)鍵因素有哪些?如何判斷?
影響因素分析的常見方法
相關(guān)分析(衡量變量間的的相關(guān)性)
問(wèn)題:這兩個(gè)屬性是否會(huì)相互影響?影響程度大嗎?營(yíng)銷費(fèi)用會(huì)影響銷售額嗎?
什么是相關(guān)關(guān)系
相關(guān)系數(shù):衡量相關(guān)程度的指標(biāo)
相關(guān)系數(shù)的三個(gè)計(jì)算公式
相關(guān)分析的假設(shè)檢驗(yàn)
相關(guān)分析的基本步驟
相關(guān)分析應(yīng)用場(chǎng)景
演練:體重與腰圍的關(guān)系
演練:營(yíng)銷費(fèi)用會(huì)影響銷售額嗎
演練:哪些因素與汽車銷量有相關(guān)性
演練:通信費(fèi)用與開通月數(shù)的相關(guān)分析
案例:酒樓生意好壞與報(bào)紙銷量的相關(guān)分析
偏相關(guān)分析
距離相關(guān)分析
方差分析
問(wèn)題:哪些才是影響銷量的關(guān)鍵因素?
方差分析解決什么問(wèn)題
方差分析種類:?jiǎn)我蛩?雙因素可重復(fù)/雙因素?zé)o重復(fù)
方差分析的應(yīng)用場(chǎng)景
方差分析的原理與步驟
如何解決方差分析結(jié)果
演練:終端擺放位置與終端銷量有關(guān)嗎?
演練:開通月數(shù)驛客戶流失的影響分析
演練:客戶學(xué)歷對(duì)消費(fèi)水平的影響分析
演練:廣告和價(jià)格是影響終端銷量的關(guān)鍵因素嗎
演練:營(yíng)業(yè)員的性別、技能級(jí)別產(chǎn)品銷量有影響嗎?
案例:2015年大學(xué)生工資與父母職業(yè)的關(guān)系
案例:醫(yī)生洗手與嬰兒存活率的關(guān)系
演練:尋找影響產(chǎn)品銷量的關(guān)鍵因素
多因素方差分析原理
多因素方差結(jié)果的解讀
演練:廣告形式、地區(qū)對(duì)銷量的影響因素分析(多因素)
協(xié)方差分析原理
演練:飼料對(duì)生豬體重的影響分析(協(xié)方差分析)
列聯(lián)分析(兩類別變量的相關(guān)性分析)
交叉表與列聯(lián)表
卡方檢驗(yàn)的原理
卡方檢驗(yàn)的幾個(gè)計(jì)算公式
列聯(lián)表分析的適用場(chǎng)景
案例:套餐類型對(duì)客戶流失的影響分析
案例:學(xué)歷對(duì)業(yè)務(wù)套餐偏好的影響分析
案例:行業(yè)/規(guī)模對(duì)風(fēng)控的影響分析
數(shù)據(jù)建模過(guò)程篇
預(yù)測(cè)建模六步法
選擇模型:基于業(yè)務(wù)選擇恰當(dāng)?shù)臄?shù)據(jù)模型
屬性篩選:選擇對(duì)目標(biāo)變量有顯著影響的屬性來(lái)建模
訓(xùn)練模型:采用合適的算法對(duì)模型進(jìn)行訓(xùn)練,尋找到最合適的模型參數(shù)
評(píng)估模型:進(jìn)行評(píng)估模型的質(zhì)量,判斷模型是否可用
優(yōu)化模型:如果評(píng)估結(jié)果不理想,則需要對(duì)模型進(jìn)行優(yōu)化
應(yīng)用模型:如果評(píng)估結(jié)果滿足要求,則可應(yīng)用模型于業(yè)務(wù)場(chǎng)景
數(shù)據(jù)挖掘常用的模型
數(shù)值預(yù)測(cè)模型:回歸預(yù)測(cè)、時(shí)序預(yù)測(cè)等
分類預(yù)測(cè)模型:邏輯回歸、決策樹、神經(jīng)網(wǎng)絡(luò)、支持向量機(jī)等
市場(chǎng)細(xì)分:聚類、RFM、PCA等
產(chǎn)品推薦:關(guān)聯(lián)分析、協(xié)同過(guò)濾等
產(chǎn)品優(yōu)化:回歸、隨機(jī)效用等
產(chǎn)品定價(jià):定價(jià)策略/最優(yōu)定價(jià)等
屬性篩選/特征選擇/變量降維
基于變量本身特征
基于相關(guān)性判斷
因子合并(PCA等)
IV值篩選(評(píng)分卡使用)
基于信息增益判斷(決策樹使用)
模型評(píng)估
模型質(zhì)量評(píng)估指標(biāo):R^2、正確率/查全率/查準(zhǔn)率/特異性等
預(yù)測(cè)值評(píng)估指標(biāo):MAD、MSE/RMSE、MAPE、概率等
模型評(píng)估方法:留出法、K拆交叉驗(yàn)證、自助法等
其它評(píng)估:過(guò)擬合評(píng)估
模型優(yōu)化
優(yōu)化模型:選擇新模型/修改模型
優(yōu)化數(shù)據(jù):新增顯著自變量
優(yōu)化公式:采用新的計(jì)算公式
模型實(shí)現(xiàn)算法(暫略)
好模型是優(yōu)化出來(lái)的
案例:通信客戶流失分析及預(yù)警模型
數(shù)值預(yù)測(cè)模型篇
問(wèn)題:如何預(yù)測(cè)產(chǎn)品的銷量/銷售金額?如果產(chǎn)品跟隨季節(jié)性變動(dòng),該如何預(yù)測(cè)?新產(chǎn)品上市,如果評(píng)估銷量上限及銷售增速?
銷量預(yù)測(cè)與市場(chǎng)預(yù)測(cè)——讓你看得更遠(yuǎn)
回歸預(yù)測(cè)/回歸分析
問(wèn)題:如何預(yù)測(cè)未來(lái)的銷售量(定量分析)?
回歸分析的基本原理和應(yīng)用場(chǎng)景
回歸分析的種類(一元/多元、線性/曲線)
得到回歸方程的幾種常用方法
回歸分析的五個(gè)步驟與結(jié)果解讀
回歸預(yù)測(cè)結(jié)果評(píng)估(如何評(píng)估預(yù)測(cè)質(zhì)量,如何選擇*回歸模型)
演練:散點(diǎn)圖找推廣費(fèi)用與銷售額的關(guān)系(一元線性回歸)
演練:推廣費(fèi)用、辦公費(fèi)用與銷售額的關(guān)系(多元線性回歸)
演練:讓你的營(yíng)銷費(fèi)用預(yù)算更準(zhǔn)確
演練:如何選擇*的回歸預(yù)測(cè)模型(曲線回歸)
帶分類變量的回歸預(yù)測(cè)
演練:汽車季度銷量預(yù)測(cè)
演練:工齡、性別與終端銷量的關(guān)系
演練:如何評(píng)估銷售目標(biāo)與資源配置(營(yíng)業(yè)廳)
時(shí)序預(yù)測(cè)
問(wèn)題:隨著時(shí)間變化,未來(lái)的銷量變化趨勢(shì)如何?
時(shí)序分析的應(yīng)用場(chǎng)景(基于時(shí)間的變化規(guī)律)
移動(dòng)平均MA的預(yù)測(cè)原理
指數(shù)平滑ES的預(yù)測(cè)原理
自回歸移動(dòng)平均ARIMA模型
如何評(píng)估預(yù)測(cè)值的準(zhǔn)確性?
案例:銷售額的時(shí)序預(yù)測(cè)及評(píng)估
演練:汽車銷量預(yù)測(cè)及評(píng)估
演練:電視機(jī)銷量預(yù)測(cè)分析
演練:上海證券交易所綜合指數(shù)收益率序列分析
演練:服裝銷售數(shù)據(jù)季節(jié)性趨勢(shì)預(yù)測(cè)分析
季節(jié)性預(yù)測(cè)模型
季節(jié)性回歸模型的參數(shù)
常用季節(jié)性預(yù)測(cè)模型(相加、相乘)
案例:*航空旅客里程的季節(jié)性趨勢(shì)分析
案例:產(chǎn)品銷售季節(jié)性趨勢(shì)預(yù)測(cè)分析
新產(chǎn)品預(yù)測(cè)模型與S曲線
如何評(píng)估銷量增長(zhǎng)的拐點(diǎn)
珀?duì)柷€與龔鉑茲曲線
案例:如何預(yù)測(cè)產(chǎn)品的銷售增長(zhǎng)拐點(diǎn),以及銷量上限
演戲:預(yù)測(cè)IPad產(chǎn)品的銷量
自定義模型(如何利用規(guī)劃求解進(jìn)行自定義模型)
案例:如何對(duì)餐廳客流量進(jìn)行建模及模型優(yōu)化
回歸模型優(yōu)化篇
回歸模型的基本原理
三個(gè)基本概念:總變差、回歸變差、剩余變差
方程的顯著性檢驗(yàn):是否可以做回歸分析?
擬合優(yōu)度檢驗(yàn):回歸模型的質(zhì)量評(píng)估?
因素的顯著性檢驗(yàn):自變量是否可用?
理解標(biāo)準(zhǔn)誤差的含義:預(yù)測(cè)的準(zhǔn)確性?
模型優(yōu)化思路:尋找*回歸擬合線
如何處理異常數(shù)據(jù)(殘差與異常值排除)
如何剔除非顯著因素(因素顯著性檢驗(yàn))
如何進(jìn)行非線性關(guān)系檢驗(yàn)
如何進(jìn)行相互作用檢驗(yàn)
如何進(jìn)行多重共線性檢驗(yàn)
如何檢驗(yàn)誤差項(xiàng)
如何判斷模型過(guò)擬合
案例:模型優(yōu)化案例
分類預(yù)測(cè)模型篇
問(wèn)題:如何評(píng)估客戶購(gòu)買產(chǎn)品的可能性?如何預(yù)測(cè)客戶的購(gòu)買行為?如何提取某類客戶的典型特征?如何向客戶精準(zhǔn)推薦產(chǎn)品或業(yè)務(wù)?
分類模型概述
常見分類預(yù)測(cè)模型
評(píng)估分類模型的常用指標(biāo)
正確率、查全率/查準(zhǔn)率、特異性等
邏輯回歸模型(LR)
邏輯回歸模型原理及適用場(chǎng)景
邏輯回歸種類:二項(xiàng)/多項(xiàng)邏輯回歸
如何解讀邏輯回歸方程
案例:如何評(píng)估用戶是否會(huì)購(gòu)買某產(chǎn)品(二項(xiàng)邏輯回歸)
消費(fèi)者品牌選擇模型分析
案例:多品牌選擇模型分析(多項(xiàng)邏輯回歸)
分類決策樹(DT)
問(wèn)題:如何預(yù)測(cè)客戶行為?如何識(shí)別潛在客戶?
風(fēng)控:如何識(shí)別欠貸者的特征,以及預(yù)測(cè)欠貸概率?
客戶保有:如何識(shí)別流失客戶特征,以及預(yù)測(cè)客戶流失概率?
決策樹分類簡(jiǎn)介
如何評(píng)估分類性能?
案例:*零售商(Target)如何預(yù)測(cè)少女懷孕
演練:識(shí)別銀行欠貨風(fēng)險(xiǎn),提取欠貸者的特征
構(gòu)建決策樹的三個(gè)關(guān)鍵問(wèn)題
如何選擇*屬性來(lái)構(gòu)建節(jié)點(diǎn)
如何分裂變量
修剪決策樹
選擇最優(yōu)屬性
熵、基尼索引、分類錯(cuò)誤
屬性劃分增益
如何分裂變量
多元?jiǎng)澐峙c二元?jiǎng)澐?br />
連續(xù)變量離散化(最優(yōu)劃分點(diǎn))
修剪決策樹
剪枝原則
預(yù)剪枝與后剪枝
構(gòu)建決策樹的四個(gè)算法
C5.0、CHAID、CART、QUEST
各種算法的比較
如何選擇最優(yōu)分類模型?
案例:商場(chǎng)酸奶購(gòu)買用戶特征提取
案例:電信運(yùn)營(yíng)商客戶流失預(yù)警與客戶挽留
案例:識(shí)別拖欠銀行貨款者的特征,避免不良貨款
案例:識(shí)別電信詐騙者嘴臉,讓通信更安全
人工神經(jīng)網(wǎng)絡(luò)(ANN)
神經(jīng)網(wǎng)絡(luò)概述
神經(jīng)網(wǎng)絡(luò)基本原理
神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)
神經(jīng)網(wǎng)絡(luò)的建立步驟
神經(jīng)網(wǎng)絡(luò)的關(guān)鍵問(wèn)題
BP反向傳播網(wǎng)絡(luò)(MLP)
徑向基網(wǎng)絡(luò)(RBF)
案例:評(píng)估銀行用戶拖欠貨款的概率
判別分析(DA)
判別分析原理
距離判別法
典型判別法
貝葉斯判別法
案例:MBA學(xué)生錄取判別分析
案例:上市公司類別評(píng)估
K近鄰分類(KNN)
基本原理
關(guān)鍵問(wèn)題
貝葉斯分類(NBN)
貝葉斯分類原理
計(jì)算類別屬性的條件概率
估計(jì)連續(xù)屬性的條件概率
貝葉斯網(wǎng)絡(luò)種類:TAN/馬爾科夫毯
預(yù)測(cè)分類概率(計(jì)算概率)
案例:評(píng)估銀行用戶拖欠貨款的概率
支持向量機(jī)(SVM)
SVM基本原理
線性可分問(wèn)題:*邊界超平面
線性不可分問(wèn)題:特征空間的轉(zhuǎn)換
維空難與核函數(shù)
市場(chǎng)細(xì)分模型篇
問(wèn)題:我們的客戶有幾類?各類特征是什么?如何實(shí)現(xiàn)客戶細(xì)分,開發(fā)符合細(xì)分市場(chǎng)的新產(chǎn)品?如何提取客戶特征,從而對(duì)產(chǎn)品進(jìn)行市場(chǎng)定位?
市場(chǎng)細(xì)分的常用方法
有指導(dǎo)細(xì)分
無(wú)指導(dǎo)細(xì)分
聚類分析
如何更好的了解客戶群體和市場(chǎng)細(xì)分?
如何識(shí)別客戶群體特征?
如何確定客戶要分成多少適當(dāng)?shù)念悇e?
聚類方法原理介紹
聚類方法作用及其適用場(chǎng)景
聚類分析的種類
K均值聚類(快速聚類)
案例:移動(dòng)三大品牌細(xì)分市場(chǎng)合適嗎?
演練:寶潔公司如何選擇新產(chǎn)品試銷區(qū)域?
演練:如何評(píng)選優(yōu)秀員工?
演練:中國(guó)各省份發(fā)達(dá)程度分析,讓數(shù)據(jù)自動(dòng)聚類
層次聚類(系統(tǒng)聚類):發(fā)現(xiàn)多個(gè)類別
R型聚類與Q型聚類的區(qū)別
案例:中移動(dòng)如何實(shí)現(xiàn)客戶細(xì)分及營(yíng)銷策略
演練:中國(guó)省市經(jīng)濟(jì)發(fā)展情況分析(Q型聚類)
演練:裁判評(píng)分的標(biāo)準(zhǔn)衡量,避免“黑哨”(R型聚類)
兩步聚類
主成分分析PCA分析
主成分分析原理
主成分分析基本步驟
主成分分析結(jié)果解讀
演練:PCA探索汽車購(gòu)買者的細(xì)分市場(chǎng)
RFM模型客戶細(xì)分框架
客戶價(jià)值評(píng)估
客戶價(jià)值評(píng)估與RFM模型
問(wèn)題:如何評(píng)估客戶的價(jià)值?如何針對(duì)不同客戶采取不同的營(yíng)銷策略?
RFM模型,更深入了解你的客戶價(jià)值
RFM的客戶細(xì)分框架理解
RFM模型與市場(chǎng)策略
RFM模型與活躍度
演練:“雙11”淘寶商家如何選擇客戶進(jìn)行促銷
演練:結(jié)合響應(yīng)模型,宜家IKE實(shí)現(xiàn)*化營(yíng)銷利潤(rùn)
演練:重購(gòu)用戶特征分析
假設(shè)檢驗(yàn)篇
參數(shù)檢驗(yàn)分析(樣本均值檢驗(yàn))
問(wèn)題:如何驗(yàn)證營(yíng)銷效果的有效性?
假設(shè)檢驗(yàn)概述
單樣本T檢驗(yàn)
兩獨(dú)立樣本T檢驗(yàn)
兩配對(duì)樣本T檢驗(yàn)
假設(shè)檢驗(yàn)適用場(chǎng)景
電信行業(yè)
案例:電信運(yùn)營(yíng)商ARPU值評(píng)估分析(單樣本)
案例:營(yíng)銷活動(dòng)前后分析(兩配對(duì)樣本)
金融行業(yè)
案例:信用卡消費(fèi)金額評(píng)估分析(單樣本)
醫(yī)療行業(yè)
案例:吸煙與膽固醇升高的分析(兩獨(dú)立樣本)
案例:減肥效果評(píng)估(兩配對(duì)樣本)
非參數(shù)檢驗(yàn)分析(樣本分布檢驗(yàn))
問(wèn)題:這些屬性數(shù)據(jù)的分布情況如何?如何從數(shù)據(jù)分布中看出問(wèn)題?
非參數(shù)檢驗(yàn)概述
單樣本檢驗(yàn)
兩獨(dú)立樣本檢驗(yàn)
兩相關(guān)樣本檢驗(yàn)
兩配對(duì)樣本檢驗(yàn)
非參數(shù)檢驗(yàn)適用場(chǎng)景
案例:產(chǎn)品合格率檢驗(yàn)(單樣本-二項(xiàng)分布)
案例:訓(xùn)練新方法有效性檢驗(yàn)(兩配對(duì)樣本-符號(hào)/秩檢驗(yàn))
案例:促銷方式效果檢驗(yàn)(多相關(guān)樣本-Friedman檢驗(yàn))
案例:客戶滿意度差異檢驗(yàn)(多相關(guān)樣本-Cochran Q檢驗(yàn))
實(shí)戰(zhàn)-數(shù)據(jù)挖掘項(xiàng)目
實(shí)戰(zhàn)1:客戶流失預(yù)警與客戶挽留之真實(shí)數(shù)據(jù)分析實(shí)踐
實(shí)戰(zhàn)2:銀行信用風(fēng)險(xiǎn)分析
結(jié)束:課程總結(jié)與問(wèn)題答疑。
數(shù)據(jù)挖掘工具課程
轉(zhuǎn)載:http://www.jkyingpanluxiangji.com/gkk_detail/273043.html
已開課時(shí)間Have start time
- 尹傳亮
大數(shù)據(jù)營(yíng)銷內(nèi)訓(xùn)
- 數(shù)字金融與智能金融下的智慧 盧森煌
- 大數(shù)據(jù)時(shí)代下服務(wù)營(yíng)銷新思維 秦超
- 數(shù)字媒體和數(shù)字教學(xué) 鐘理勇
- 數(shù)字化轉(zhuǎn)型與新質(zhì)生產(chǎn)力 盧森煌
- 大數(shù)據(jù)行業(yè)的現(xiàn)狀與熱點(diǎn) 徐全
- 《零售行業(yè)社群團(tuán)購(gòu)運(yùn)營(yíng)》 陳蕊
- 《企業(yè)數(shù)據(jù)管理與數(shù)據(jù)資產(chǎn)化 張光利
- 管理者數(shù)據(jù)能力晉級(jí) 宋致旸
- 數(shù)字經(jīng)濟(jì)基礎(chǔ)和企業(yè)數(shù)字化轉(zhuǎn) 盧森煌
- 企業(yè)區(qū)塊鏈技術(shù)的應(yīng)用場(chǎng)景與 李璐
- 《小紅書運(yùn)營(yíng)策劃與執(zhí)行》 黃光偉
- 商業(yè)銀行數(shù)據(jù)治理體系建設(shè)實(shí) 馬慶